
The most qualified support team

Introducing JVM JAM, the in-depth Java JVM Analyzer/Monitoring application for Java versions 6, 7, 8, 

and the latest versions, 9, 10, and 11, that reads Java Garbage Collection (GC) log files produced by your 

JVM while running your Java application. These log files can be either be static log files or files that are 

dynamically generated in real-time.

With JVM JAM you can perform in-depth analysis and real time monitoring and alerting of dozens of 

metrics relative to the behavior of your JVM and application and system that they are running on. Works 

with single or multi-hosts. Some metrics that you can analyze and monitor are:

Allocation Rate, to see how quickly your applications tasks are being executed

Heap Use, to see how much memory your application is using

Garbage Collection, to see how much of your servers’ resources are taken away 

from your application by Java housekeeping processes

System, to see how much of your servers’ resources are being used in general

JVM Analyzer Monitor

JVM JAM can perform deep JVM analysis to help Enterprise Java applications keep running at peak perfor-

mance and offers a way to find inherent Java and “ghost in the machine” issues that only highly skilled 

Java engineers understand. JVM JAM will be the most complete and sophisticated Java analyzer and 

monitoring tool available.

We are introducing JVM JAM on the Splunk platform. We chose Splunk because it is a popular platform 

that captures, indexes, and correlates real-time data in a searchable repository that can generate graphs, 

reports, alerts, dashboards and visualizations.

Using JVM JAM you can now monitor and troubleshoot your Java instances and keep your data secure 

by not having to upload your log files to a third-party site.



Full list of planned features

Thread Delay - App Thread Delay

Memory - Memory Use

Page Faults - Page Faults

Threads - Thread Snapshots

Allocation Rate - Allocation Rate

Heap Chart - Heap Before and After 

GC - Connected

Live Set - Live Java Objects

Paging - Heap Paging Behavior

Page Cache - Page Cache

Heap Use - Detailed Heap Use per Specific Phase

Undo - Undo

References - Object References

Marking - GC Marking Details

Relocation - GC Relocation Details

Phase Contention - GC Phase Contention

Critical Stalls - Critical Stalls

GC Count - Running Aggregate of the number 

of GCs that have occurred

Duration - GC Duration

STW - Stop The World Cause

GC Triggers - GC Trigger Causes

GC Subphase - GC Subphase Details

CPU - CPU Utilization

Safe Point Details - Safe Point and GC Details

References - Object References

System Load - System Load Average

Page Cache - Page Cache Memory Use

Linux Memory - Linux Memory

Paging - Paging Behavior

Threads - Thread Snapshots

Contact us to add or customize any features you may require.

Try our Free open source high performance JVM SEGUE2LL for low latency performance and 

up to 4TB heap capability.


